(本小题满分13分)已知曲线D:交轴于A、B两点,曲线C是以AB为长轴,离心率的椭圆。(1)求椭圆的标准方程;(2)设M是直线上的任一点,以OM为直径的圆交曲线

(本小题满分13分)已知曲线D:交轴于A、B两点,曲线C是以AB为长轴,离心率的椭圆。(1)求椭圆的标准方程;(2)设M是直线上的任一点,以OM为直径的圆交曲线

题型:不详难度:来源:
(本小题满分13分)
已知曲线D轴于AB两点,曲线C是以AB为长轴,离心率的椭圆。
(1)求椭圆的标准方程;
(2)设M是直线上的任一点,以M为直径的圆交曲线DPQ两点(为坐标原点)。若直线PQ与椭圆C交于GH两点,交x轴于点E,且。试求此时弦PQ的长。
答案
,
解析
(1)圆方程由参数方程可化为轴于A,B
依题意,设椭圆,则,得

椭圆方程为……………………………………………………… 5分
(2)设直线上任一点M,则以OM为直径的圆方程为
,即
又⊙O方程为直线PQ方程为
∴点的坐标为
……………………………… 8分
设G,H,则 1
  2

      3
由123解得
方程:
圆心O到的距离

即弦PQ的长为…………………………………… 13分
举一反三
(本小题13分)已知定点及椭圆,过点的动直线与该椭圆相交于两点.
(1)若线段中点的横坐标是,求直线的方程;
(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
(本小题满分14分)
如图所示,椭圆C 的两个焦点为,短轴两个端点为.已知 成等比数列,,与 轴不垂直的直线 与C 交于不同的两点,记直线的斜率分别为,且
(Ⅰ)求椭圆 的方程;
(Ⅱ)求证直线 与 轴相交于定点,并求出定点坐标;
(Ⅲ)当弦 的中点落在四边形 内(包括边界)时,求直线 的斜率的取值范围.
题型:不详难度:| 查看答案
已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线
(1)求曲线的方程;
(2)若直线与(1)中所求点的轨迹交于不同两点是坐
标原点,且,求△的面积的取值范围.
题型:不详难度:| 查看答案
选修4-1:几何证明选讲
△ABC内接于⊙O,AB=AC,直线MN切⊙O于C,弦BD∥MN,AC、BD交于点E
(1)求证:△ABE≌△ACD
(2)AB=6,BC=4,求AE
题型:不详难度:| 查看答案
已知双曲线的焦点为,点在双曲线上且轴,则到直线的距离为                                                  (   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.