(本小题满分10分)椭圆的离心率为,且过点。(1)求椭圆的方程;(2)设直线与椭圆交于两点,,求的值。

(本小题满分10分)椭圆的离心率为,且过点。(1)求椭圆的方程;(2)设直线与椭圆交于两点,,求的值。

题型:不详难度:来源:
(本小题满分10分)椭圆的离心率为,且过点
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,求的值。
答案
(1);(2)
解析
(1)由已知,         
所以,                   …………………2分
,所以
所以椭圆的方程为        …………………4分
(2)联立
消去,                 …………………5分

,即,解得.  …………………6分
两点的坐标分别为
,               …………………7分

…………………9分


                                         …………………10分
举一反三
(本小题满分11分)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线的标准方程;
(2)若的三个顶点在抛物线上,且点的横坐标为1,过点分别作抛物线的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由。
题型:不详难度:| 查看答案
已知为抛物线上的不同两点,为抛物线的焦点,若则直线的斜率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
(Ⅲ)设直线与椭圆交于两点,若直线轴于点,且,当变化时,求 的值;   
题型:不详难度:| 查看答案
经过抛物线的焦点,且倾斜角为的直线方程为             (   )
A.B.
C..mD.

题型:不详难度:| 查看答案
是椭圆的长轴,若把长轴2010等分,过每个分点作 的垂线,交椭圆的上半部分于为椭圆的左焦点,则的值是                    (    )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.