(本小题满分14分)设,为直角坐标平面内轴正方向上的单位向量,若向量,,且.(1)求点的轨迹的方程;(2)过点(0,3)作直线与曲线交于两点,设,是否存在这样的

(本小题满分14分)设,为直角坐标平面内轴正方向上的单位向量,若向量,,且.(1)求点的轨迹的方程;(2)过点(0,3)作直线与曲线交于两点,设,是否存在这样的

题型:不详难度:来源:
(本小题满分14分)设,为直角坐标平面内轴正方向上的单位向量,若向量,,且.(1)求点的轨迹的方程;(2)过点(0,3)作直线与曲线交于两点,设,是否存在这样的直线,使得四边形是矩形?若存在,求出直线的方程;若不存在,试说明理由.
答案
(Ⅰ)   (Ⅱ)  
解析
(1)由,得,设则动点满足,所以点在椭圆上,且椭圆的.所以轨迹的方程为.
(2)设直线的斜率为,则直线方程为,联立方程组消去 得:,恒成立,设,则.由,所以四边形为平行四边形.若存在直线,使四边形为矩形,则,即,解得,所以直线的方程为,此时四边形为矩形.
举一反三

(本小题共13分)
  如图,在直角坐标系中,O为坐标原点,直线AB⊥x轴于点C,,动点M到直线AB的距离是它到点D的距离的2倍。
  (I)求点M的轨迹方程;
  (II)设点K为点M的轨迹与x轴正半轴的交点,直线l交点M的轨迹于E,F两点(E,F与点K不重合),且满足,动点P满足,求直线KP的斜率的取值范围。
  
题型:不详难度:| 查看答案
知抛物线Cy2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
题型:不详难度:| 查看答案
等腰三角形的顶点的坐标是,底边一个端点的坐标是,求另一个端点的轨迹方程,并说明它是什么图形.
题型:不详难度:| 查看答案
如图,抛物线的顶点在坐标原点,且开口向右,点ABC在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为
(Ⅰ)求抛物线的方程;
(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于PQ两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由。
题型:不详难度:| 查看答案
已知两定点AB,一动点P,如果∠PAB和∠PBA中的一个是另一个的2倍,求P点的轨迹方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.