已知双曲线C:x2-y2=1,l:y=kx+1(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试判断以Q为中点

已知双曲线C:x2-y2=1,l:y=kx+1(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试判断以Q为中点

题型:不详难度:来源:
已知双曲线C:x2-y2=1,l:y=kx+1
(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.
答案
(1)联立方程组





y=kx+1
x2-y2=1

消去y得,(1-k2)x2-2kx-2=0.
当1-k2=0,即k=±1时,x=±1;
当1-k2≠0,k≠±1时,△=(-2k)2+4-2(1-k2)=8-4k2
由△>0,即8-4k2>0,得-


2
<k<


2

由△=0,即8-4k2=0,得k=±


2

由△<0,即8-4k2<0,得k<-


2
或k


2

综上知:k∈(-


2,
-1)∪(-1,1)∪
(1,


2
)
时,直线l与曲线C有两个交点.
k=±


2
时,直线l与曲线C切于一点,k=±1时,直线l与曲线C交于一点.
k<-


2
或k


2
直线l与曲线C没有公共点.
(2)不存在.
假设以Q点为中点的弦存在,
当过Q点的直线的斜率不存在时,显然不满足题意.
当过Q点的直线的斜率存在时,设斜率为k.
联立方程





x12-y12=1
x22-y22=1
两式相减得:(x1-x2)(x1+x2)-(y1-y2)(y1+y2)=0.
所以过点Q的直线的斜率为k=1,
所以直线的方程为y=x,即为双曲线的渐近线
与双曲线没有公共点.
即所求的直线不存在.
举一反三
已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.
题型:不详难度:| 查看答案
椭圆C:
x2
9
+
y2
4
=1
,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.
题型:不详难度:| 查看答案
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点A(2,1).
(1)求椭圆C的标准方程;
(2)若直线l:x-1-y=0与椭圆C交于不同的两点M,N,求|MN|的值.
题型:不详难度:| 查看答案
己知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.
题型:不详难度:| 查看答案
若AB为抛物线y2=2px(p>0)的动弦,且|AB|=a(a>2p),则AB的中点M到y轴的最近距离是(  )
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.