已知F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,|F1F2|=2,离心率e=12,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.

已知F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,|F1F2|=2,离心率e=12,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.

题型:不详难度:来源:
已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,|


F1F2
|=2
,离心率e=
1
2
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)设直线l的倾斜角为
π
4
,求线段MN中点的坐标.
答案
(1)∵2c=|


F1F2
|=2
,∴c=1,
又由e=
c
a
=
1
2
,得a=2,∴b2=22-12=3,
∴椭圆的标准方程为
x2
4
+
y2
3
=1

(2)∵F2(1,0),kl=tan
π
4
=1

∴直线l:y=x-1,
设M(x1,y1),N(x2,y2),
线段MN的中点为G(x0,y0).





x2
4
+
y2
3
=1
y=x-1

得7x2-8x-8=0,
x1+x2=
8
7

x0=
x1+x2
2
=
4
7
y0=x0-1=-
3
7

故线段MN的中点为(
4
7
,-
3
7
)
举一反三
如图,已知点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点,若点C(


3
2


3
2
)
在椭圆上,且满足


OC


OA
=
3
2
.(其中O为坐标原点)
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与椭圆交于两点M,N,当


OM
+


ON
=m


OC
,m∈(0,2)
时,求△OMN面积的最大值.
题型:不详难度:| 查看答案
已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


6
3
,右焦点为(2


2
,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
题型:不详难度:| 查看答案
已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量


OM
=


OA


OB
,求λ的值.
题型:不详难度:| 查看答案
如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=______.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c;若以F2为圆心,b-c为半径作圆F2,过椭圆上任一点P(x0,y0)作此圆的切线,切点为T,且|PT|的最小值不小于


3
2
(a-c).
(Ⅰ)证明:|PF2|的最小值为a-c;
(Ⅱ)求椭圆的离心率e的取值范围;
(Ⅲ)若椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为2的直线l与椭圆交于A、B两点,若OA⊥OB,求椭圆的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.