(Ⅰ)∵动点M到定点F与到定直线x=-的距离相等 ∴点M的轨迹为抛物线,轨迹C的方程为:y2=2px.(4分)
(Ⅱ)设A(x1,y1),B(x2,y2) ∵•=0 ∴x1x2+y1y2=0 ∵y12=2px1,y22=2px2 ∴x1x2=4p2 ∴=||2||2=(+)(+) =(+2px1)(+2px2) =[(x1x2)2+2px1x2(x1+x2)+4p2x1x2]≥[(x1x2)2+2px1x2•2+4p2x1x2]=16p4 ∴当且仅当x1=x2=2p时取等号,△AOB面积最小值为4p2.(9分)
(Ⅲ)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x0,y0) ∵P(x3,y3),Q(x4,y4)在轨迹C上 ∴y32=2px3,y42=2px4 两式相减得:(y3-y4)(y3+y4)=2p(x3-x4) ∴y3+y4=2p=-2pk ∴y0=-pk ∵D(x0,y0)在m:y=k(x-)(k≠0)上 ∴x0=-<0,点D(x0,y0)在抛物线外 ∴在轨迹C上不存在两点P,Q关于直线m对称.(14分) |