某市足球一队与足球二队都参加全省足球冠军赛,一队夺冠的概率为25,二队夺冠的概率为14,则该市得冠军的概率为920.

某市足球一队与足球二队都参加全省足球冠军赛,一队夺冠的概率为25,二队夺冠的概率为14,则该市得冠军的概率为920.

题型:不详难度:来源:
某市足球一队与足球二队都参加全省足球冠军赛,一队夺冠的概率为
2
5
,二队夺冠的概率为
1
4
,则该市得冠军的概率为
9
20
答案
由题意知该市得冠军包括两种情况,
一是一队夺冠,二是二队夺冠,
这两种情况是互斥的,
根据互斥事件的概率公式得到P=
2
5
×
3
4
+
3
5
×
1
4
=
9
20

故答案为:
9
20
举一反三
从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是(  )
A.①B.②④C.③D.①③
题型:不详难度:| 查看答案
同时掷3枚硬币,那么互为对立的事件是(  )
A.至少有1枚正面和最多有1枚正面
B.最多有1枚正面和恰有2枚正面
C.不多于1枚正面和至少有2枚正面
D.至少有2枚正面和恰有1枚正面
题型:不详难度:| 查看答案
给出命题:
(1)对立事件一定是互斥事件
(2)若A、B为两个事件,则P(AUB)=P(A)+P(B)
(3)若事件A、B、C两两互斥,则P(A)+P(B)+P(C)=1
(4)若事件A、B满足P(A)+P(B)=1,则A、B为对立事件
其中错误命题的个数是(  )
A.3B.2C.1D.0
题型:不详难度:| 查看答案
射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;
(2)不够7环的概率.
题型:不详难度:| 查看答案
设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都露显性基因决定的某一特征,孩子从父母身上各得到1个基因,假定父母都是混合性.
问:(1)1个孩子有显性基因决定的特征的概率是多少?
(2)2个孩子中至少有一个有显性基因决定的特征的概率是多少?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.