甲、乙两人相约在0时至1时之间在某地碰头,早到者到达后应等20分钟方可离去,如果两人到达的时刻是相互独立的,且在0时到1时之间的任何时刻是等概率的,问他们两人相
题型:不详难度:来源:
甲、乙两人相约在0时至1时之间在某地碰头,早到者到达后应等20分钟方可离去,如果两人到达的时刻是相互独立的,且在0时到1时之间的任何时刻是等概率的,问他们两人相遇的可能性有多大? |
答案
设两人到达约会地点的时刻分别为x,y,依题意,必须满足|x-y|≤才能相遇.我们把他们到达的时刻分别作为横坐标和纵坐标,于是两人到达的时刻均匀地分布在一个边长为1的正方形Ⅰ内,如图所示,而相遇现象则发生在阴影区域G内,即甲、乙两人的到达时刻(x,y)满足|x-y|≤,所以两人相遇的概率为区域G与区域Ⅰ的面积之比:P===. 也就是说,他们相遇的可能性过半. |
举一反三
甲,乙两人约定在晚上7时到8时之间在“钓鱼岛”餐厅会面,并约定先到者应等候另一人一刻钟,过时即可离去,则两人能会面的概率为______. |
若a∈[-1,1],b∈[-1,1],求关于x的方程x2+ax+b2=0有实根的概率. |
在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为( ) |
已知区域A={(x,y)|y≥|x-1|},区域B={(x,y)|y≤2-|x-1|},点P在区域M=A∩B,则|OP|≤1的概率是______. |
如图,OMPN是扇形的内接矩形,点M在OA上,点N在OB上,点P在弧上,现向扇形内任意投一点,则该点落在矩形内部的概率的最大值为 ______.
|
最新试题
热门考点