甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概

甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概

题型:不详难度:来源:
甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.
(1)求甲、乙二人共命中一次目标的概率;
(2)设X为二人得分之和,求X的分布列和期望.
答案
(1)0.18;(2)详见解析.
解析

试题分析:本题主要考查二项分布、独立事件、随机变量的分布列和数学期望等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,由题意分析,“甲乙二人共命中”共有2种情况:一种是甲射击2次中一次、乙没中,一种情况是甲射击2次都没中、乙中一次;第二问,由题意分析:甲乙射击是否命中有以下几种情况:1.甲2次都没中、乙没中,2.甲2次都没中、乙中一次,3.甲2次中一次、乙没中,4.甲2次中1次、乙中1次,5.甲2次都中、乙没中,6.甲2次都中、乙中一次,共6种情况,所以得分情况分别为0分、5分、10分、15分、20分,共5种情况,分别与上述情况相对应,求出每一种情况的概率,列出分布列,再利用计算数学期望.
试题解析:(1)记事件“甲、乙二人共命中一次”为A,则
P(A)=0.8×0.2×0.5+0.22×0.5=0.18.       4分
(2)X的可能取值为0,5,10,15,20.
P(X=0)=0.22×0.5=0.02,P(X=5)=0.8×0.2×0.5=0.16,
P(X=10)=0.82×0.5+0.22×0.5=0.34,P(X=15)=0.8×0.2×0.5=0.16,
P(X=20)=0.82×0.5=0.32.
X的分布列为
X
0
5
10
15
20
P
0.02
0.16
0.34
0.16
0.32
 10分
X的期望为
E(X)=0×0.02+5×0.16+10×0.34+15×0.16+20×0.32=13.  12分
举一反三
从1,2,3,个数中任取两个数,设这两个数之积的数学期望为,则________.
题型:不详难度:| 查看答案
设随机变量的概率分布律如下表所示:








其中成等差数列,若随机变量的的均值为,则的方差为___________.
题型:不详难度:| 查看答案
从5男和3女8位志愿者中任选3人参加冬奥会火炬接力活动,若随机变量ξ表示所选3人中女志愿者的人数,则ξ的数学期望是          
题型:不详难度:| 查看答案
某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为,B级考试合格的概率为.假设各级考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得该选修课的合格证书的概率;
(2)在这个考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E
题型:不详难度:| 查看答案
袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个.
(1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;
(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.