分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0

分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0

题型:不详难度:来源:
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.
(1)p:4∈{2,3},q:2∈{2,3};
(2)p:1是奇数,q:1是质数;
(3)p:0∈,q:{x|x2-3x-5<0}R;
(4)p:5≤5,q:27不是质数;
(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},
q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
答案
(1)pq为真,pq为假,P为真.
(2)pq为真,pq为假,p为假.
(3) pq为真命题,pq为假命题,p为真命题.
(4)pq为真命题,pq为真命题,p为假命题.
(5)pq为真,pq为假,p为假.
解析
(1)∵p是假命题,q是真命题,∴pq为真,pq为假,P为真.
(2)∵1是奇数,∴p是真命题,
又∵1不是质数,∴q是假命题,因此pq为真,pq为假,p为假.
(3)∵0,∴p为假命题,
又∵x2-3x-5<0
成立.
∴q为真命题.∴pq为真命题,pq为假命题,p为真命题.
(4)显然p:5≤5为真命题,q:27不是质数为真命题,
∴pq为真命题,pq为真命题,p为假命题.
(5)∵x2+2x-8<0, ∴(x+4)(x-2)<0.
即-4<x<2,∴x2+2x-8<0的解集为∴命题p为真,q为假.
∴pq为真,pq为假,p为假.
举一反三
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.
题型:不详难度:| 查看答案
写出下列命题的否定并判断真假.
(1)p:所有末位数字是0的整数都能被5整除;
(2)q:x≥0,x2>0;
(3)r:存在一个三角形,它的内角和大于180°;
(4)t:某些梯形的对角线互相平分.
题型:不详难度:| 查看答案
指出下列命题的真假:
(1)命题“不等式(x+2)2≤0没有实数解”;
(2)命题“1是偶数或奇数”;
(3)命题“属于集合Q,也属于集合R”;
(4)命题“AAB”.
题型:不详难度:| 查看答案
写出下列命题的否命题及命题的否定形式,并判断真假:
(1)若m>0,则关于x的方程x2+x-m=0有实数根;
(2)若x、y都是奇数,则x+y是奇数;
(3)若abc=0,则a、b、c中至少有一个为零.
题型:不详难度:| 查看答案
(本小题满分12分) 已知,设命题,命题,非P∨非Q是假命题,求的集合。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.