已知命题p:∃x∈R,使2x2+(k-1)x+12≤0;命题q:方程x29-k+y2k-1=1表示焦点x轴上的椭圆,若¬p为真命题,p∨q为真命题,求实数k的取

已知命题p:∃x∈R,使2x2+(k-1)x+12≤0;命题q:方程x29-k+y2k-1=1表示焦点x轴上的椭圆,若¬p为真命题,p∨q为真命题,求实数k的取

题型:不详难度:来源:
已知命题p:∃x∈R,使2x2+(k-1)x+
1
2
≤0
;命题q:方程
x2
9-k
+
y2
k-1
=1
表示焦点x轴上的椭圆,若¬p为真命题,p∨q为真命题,求实数k的取值范围.
答案
∵命题p:∃x∈R,使2x2+(k-1)x+
1
2
≤0

¬p为真命题,
∴p为假,即∀x∈R,使2x2+(k-1)x+
1
2
>0,
∴△=(k-1)2-4×
1
2
<0,解得-1<k<3,
∵p∨q为真命题,
命题q:方程
x2
9-k
+
y2
k-1
=1
表示焦点x轴上的椭圆,
∴q为真,∴





9-k>0
k-1>0
9-k>k-1
,解得1<k<5,
所以1<k<3.
故实数k的取值范围是(1,3).
举一反三
PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是______.
题型:不详难度:| 查看答案
定义“正对数”:ln+x=





0,0<x<1
lnx,x≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+b

④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中正确的命题有(  )
A.①③④B.①②③C.①②④D.②③④
题型:不详难度:| 查看答案
定义在R上的函数f(x)=-x-x3,设x1+x2≤0,下列不等式中正确的序号有______.
①f(x1)f(-x1)≤0 
②f(x2)f(-x2)>0
③f(x1)+f(x2)≤f(-x1)+f(-x2) 
④f(x1)+f(x2)≥f(-x1)+f(-x2
题型:不详难度:| 查看答案
已知命题p:∃x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是______.
题型:不详难度:| 查看答案
给出下列命题:
①若A,B是锐角△ABC的两内角,则有sinA>cosB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tanα的值为-
23
16

④存在实数x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,则
sin2x
x2
sinx
x

其中正确的命题为______(写出所有正确命题的序号).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.