函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①

函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①

题型:顺义区一模难度:来源:
函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2-2x(x∈R)是单函数;
②函数f(x)=





log2x,x≥2
2-x,x<2
是单函数;
③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.
其中的真命题是______(写出所有真命题的编号).
答案
①中函数f(x)=x2-2x(x∈R),当x=0或x=2时,f(x)=0,故∃x1,x2∈A且f(x1)=f(x2)时,有x1≠x2,不满足“单函数”的定义;
②中函数f(x)=





log2x ,x≥2
2-x,x<2
,当x=0或x=4时,f(x)=2,故∃x1,x2∈A且f(x1)=f(x2)时,有x1≠x2,不满足“单函数”的定义;
③由“单函数”的定义可得f(x1)=f(x2)时总有x1=x2,故其逆否命题:x1≠x2,则f(x1)≠f(x2)成立,故③为真命题
④中函数f(x)在定义域内某个区间D上具有单调性,但在整个定义域上有增有减时,可能会存在x1≠x2,使x1≠x2,从而不满足“单函数”的定义;
综上真命题只有③
故答案为:③
举一反三
若函数f(x)对于任意x∈[a,b],恒有|f(x)-f(a)-
f(b)-f(a)
b-a
(x-a)|≤T(T为常数)成立,则称函数f(x)在[a,b]上具有“T级线性逼近”.下列函数中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=
1
x

④f(x)=x3
则在区间[1,2]上具有“
1
4
级线性逼近”的函数的个数为(  )
A.1B.2C.3D.4
题型:宁德模拟难度:| 查看答案
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
π
6
)|对x∈R恒成立,且f(
π
2
)<f(π).则下列结论正确的是(  )
A.f(
11
12
π)=-1
B.f(
10
>f(
π
5
)
C.f(x)是奇函数
D.f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
](k∈Z)
题型:顺义区一模难度:| 查看答案
已知m,n是两条不同的直线,α,β是两个不同的平面.
①若m⊂α,m⊥β,则α⊥β,
②若m⊂α,α∩β=n,α⊥β,则m⊥n;
③若m⊂α,n⊂β,αβ,则mn;    
④若mα,m⊂β,α∩β=n,则mn.
上述命题中为真命题的是______(填写所有真命题的序号).
题型:盐城三模难度:| 查看答案
已知函数f(x)=4|a|x-2a+1.若命题:“∃x0∈(0,1),使f(x0)=0”是真命题,则实数a的取值范围为______.
题型:揭阳二模难度:| 查看答案
在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是______.
题型:东城区二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.