在各边长均为1的平行六面体ABCD-A1B1C1D1中,M为上底面A1B1C1D1的中心,且AA1,AD,AB每两条的夹角都是60°,则向量AM的长|AM|=_

在各边长均为1的平行六面体ABCD-A1B1C1D1中,M为上底面A1B1C1D1的中心,且AA1,AD,AB每两条的夹角都是60°,则向量AM的长|AM|=_

题型:不详难度:来源:
在各边长均为1的平行六面体ABCD-A1B1C1D1中,M为上底面A1B1C1D1的中心,且AA1,AD,AB每两条的夹角都是60°,则向量


AM
的长|


AM
|
=______.
答案
由向量加减的三角形法则和平行四边形法则可得:


AM
=


AA1
+


A1M
=


AA1
+
1
2


A1B1
+


A1D1
)=


AA1
+
1
2


AB
+


AD
),


AM
2
=


AA1
2
+
1
4


AB
2
+
1
4


AD
2
+


AA1


AB
+


AA1


AD
+
1
2


AB


AD

=1+
1
4
+
1
4
+1×1×
1
2
+1×1×
1
2
+
1
2
×1×1×
1
2
=
11
4

故向量


AM
的长|


AM
|
=


11
4
=


11
2
举一反三
(文科)设向量


a
=(cos23°,cos67°),


b
=(cos68°,cos22°),


u
=


a
+t


b
(t∈R),则|


u
|的最小值是______.
题型:不详难度:| 查看答案
已知向量


a
=(1,t),


b
=(-1,t)
,若2


a
-


b


b
垂直,则|


a
|
=______.
题型:朝阳区三模难度:| 查看答案
平面向量


a


b
的夹角为60°,


a
=(2,0),|


b
|=1 则|


a
+2


b
|=______.
题型:奉贤区一模难度:| 查看答案
已知向量


a
=(2,m),


b
=(-1,m),若2


a
-


b


b
垂直,则|


a
|=(  )
A.1B.2C.3D.4
题型:安徽模拟难度:| 查看答案
已知


a
=(2sin
x
2


3
+1)


b
=(cos
x
2
-


3
sin
x
2
,1)
f(x)=


a


b
+m

(1)求f(x)在[0,2π]上的单调区间
(2)当x∈[0,
π
2
]
时,f(x)的最小值为2,求f(x)≥2成立的x的取值集合.
(3)若存在实数a,b,C,使得a[f(x)-m]+b[f(x-C)-m]=1,对任意x∈R恒成立,求
b
a
cosC
的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.