当半径为1的圆周十二等分,从分点i到分点i+1的向量依次记作titi+1,则t1t2•t2t3+t2t3•t3t4+…+t12t1•t1t2=______.

当半径为1的圆周十二等分,从分点i到分点i+1的向量依次记作titi+1,则t1t2•t2t3+t2t3•t3t4+…+t12t1•t1t2=______.

题型:不详难度:来源:
当半径为1的圆周十二等分,从分点i到分点i+1的向量依次记作


titi+1
,则


t1t2


t2t3
+


t2t3


t3t4
+…+


t12t1


t1t2
=______.
答案
∵把圆分成12份,
∴每一份所对应的圆心角是30度,
连接相邻的两点组成等腰三角形底边平方为2-


3

每对向量的数量积为


3
(2-


3
)
1
2

∴最后结果为12(


3
-
3
2
)=12


3
-18

故答案为:12


3
-18
举一反三
在△ABC中,三边AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的任意一条直径,记T=


BP


CQ
,则T的最大值为______.
题型:不详难度:| 查看答案
设向量


OA
=(3,1),


OB
=(-1,2),向量


OC


OB


BC


OA
,又


OD
+


OA
=


OC
,求


OD
题型:不详难度:| 查看答案
已知


a
=(3,-4),


b
=(2,3),则2|


a
|-3


a


b
=______.
题型:不详难度:| 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:


AH


BC
=0
;②


AB


AH
=c•sinB
;③


BC
•(


AC
-


AB
)
=b2+c2-2bc•cosA;④


AH
•(


AB
+


BC
)=


AH


AB
.其中所有正确结论的序号是______.
题型:不详难度:| 查看答案
在直角坐标平面中,△ABC的两个顶点A,B的坐标分别为A(-


7
7
,0)
B(


7
7
,0)
,两动点M,N满足


MA
+


MB
+


MC
=


0
,|


NC
|=


7
|


NA
|=


7
|


NB
|,向量


MN


AB
共线.
(1)求△ABC的顶点C的轨迹方程;
(2)若过点P(0,1)的直线与(1)轨迹相交于E,F两点,求


PE


PF
的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.