如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且P

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且P

题型:不详难度:来源:
如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.
答案
(1)见解析   (2)
解析
解:(1)证明:由已知得AB=3,AD=6,
∴BD=9.
在矩形ABCD中,∵AE⊥BD,
∴Rt△AOD∽Rt△BAD,
,∴DO=4,∴BO=5.
在△POB中,PB=,PO=4,BO=5,
∴PO2+BO2=PB2
∴PO⊥OB.又PO⊥AE,AE∩OB=O,
∴PO⊥平面ABCE.
(2)∵BO=5,
∴AO==2.
以O为原点,建立如图所示的空间直角坐标系,则P(0,0,4),

A(2,0,0),B(0,5,0),
=(2,0,-4),=(0,5,-4).
设n1=(x,y,z)为平面APB的法向量.

取x=2得n1=(2,4,5).
又n2=(0,1,0)为平面AEP的一个法向量,
∴cos〈n1,n2〉=
故二面角E­AP­B的余弦值为.
举一反三
如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.
题型:不详难度:| 查看答案
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,四棱锥中,,底面为梯形,,且.

(1)求证:;
(2)求二面角的余弦值.
题型:不详难度:| 查看答案
如图,三棱柱中,△ABC是正三角形,,平面平面.

(1)证明:
(2)证明:求二面角的余弦值;
(3)设点是平面内的动点,求的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.