试题分析:解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面. 5分 (Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是. 法1:以点为原点,、、为轴、轴、轴,建立空间直角坐标系.则、、、,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3. 13分 法2:设与交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由∽可得,而,所以,,而,所以,于是,而,于是二面角的正切值为. 点评:主要是考查了空间几何体中线面垂直的证明,以及二面角的平面角的求解,属于中档题。 |