如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰

如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰

题型:不详难度:来源:
如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.

(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体的体积。
答案
(1)详见解析;(2) ; (3)
解析

试题分析:(1)平面图中因为A1D∥A2A3,A1A2⊥A2A3,所以,立体图中不变,即,可证得,就可证出AB⊥CD。(2)由(1)知AB⊥平面ACD.,所以AD即为BD在面ACD内的射影,所以∠BDA即为所求。在直角三角形中利用三角函数可求其正切值。(3)由(1)知,所以可以选以面ADC为底面,以AB为高求其体积。
试题解析:(1)证明:∵在直角梯形A1A2A3D中,A1B⊥A1D,A2B⊥A2C,
∴在三棱锥ABCD中,AB⊥AD,AB⊥AC.
∵AC∩AD=A,∴AB⊥平面ACD.
∵CD⊂平面ACD,∴AB⊥CD.
(2)解:由(1)知AB⊥平面ACD,
∴AD为BD在平面ACD内的射影,
∠BDA是直线BD和平面ACD所成的角.
依题意,在直角梯形A1A2A3D中,
A1D=A3D=10,A1B=A2B=4,
∴在三棱锥ABCD中,AD=10,AB=4.
在Rt△ABD中,tan ∠BDA=.
∴直线BD和平面ACD所成的角的正切值为.
(3)由(2)得:

举一反三
如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.
题型:不详难度:| 查看答案
如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

题型:不详难度:| 查看答案
过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为_______.
题型:不详难度:| 查看答案
在棱长为1的正方体ABCD﹣A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:
①四边形BFD1E有可能为梯形
②四边形BFD1E有可能为菱形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D1D
⑤四边形BFD1E面积的最小值为
其中正确的是      (请写出所有正确结论的序号)
题型:不详难度:| 查看答案
如图,在正方体中,已知是棱的中点.

求证:(1)平面
(2)直线∥平面
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.