边长为a的正三角形内任一点到三边距离之和为定值32a,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )A.3a3B.6a2C.6a3D.2a2

边长为a的正三角形内任一点到三边距离之和为定值32a,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )A.3a3B.6a2C.6a3D.2a2

题型:不详难度:来源:
边长为a的正三角形内任一点到三边距离之和为定值


3
2
a
,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )
A.


3
a
3
B.


6
a
2
C.


6
a
3
D.


2
a
2
答案
本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,
如图:
由棱长为a可以得到BF=


3
2
,BO=AO=


6
3
-OE

在直角三角形中,根据勾股定理可以得到
BO2=BE2+OE2
把数据代入得到OE=


6
12

∴棱长为a的三棱锥内任一点到各个面的距离之和4×


6
12
=


6
3

故选C.
举一反三
如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且


F2M


MP
=0
.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得|OM|=
1
2
|NF1|=…=a
.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且


F2M


MP
=0
.则|OM|的取值范围是 ______.
题型:不详难度:| 查看答案
我们知道等比数列与等差数列在许多地方都有类似的性质,请由等差数列{an}的前n项和公式Sn=na1+
n(n-1)
2
d
(d为公差),类比地得到等比数列{bn}的前n项积公式Tn=______(q为公比)
题型:不详难度:| 查看答案
在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则b4,b5,b7,b8的一个不等关系是(  )
A.b4+b8>b5+b7B.b5+b7>b4+b8
C.b4+b7>b5+b8D.b4+b5>b7+b8
题型:不详难度:| 查看答案
有三根杆子A,B,C,A杆上串有3个穿孔圆盘,尺寸由下到上依次变小,要求按如下规则将圆盘移至C杆上:(1)每次只能移动一个盘子;(2)在每根杆子上始终保持大盘在下小盘在上的次序,则需移动盘子最少(  )次.
A.6B.7C.8D.9
题型:不详难度:| 查看答案
可作为四面体的类比对象的是(  )
A.四边形B.三角形C.棱锥D.棱柱
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.