类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:bn=______,dn=_

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:bn=______,dn=_

题型:广东模拟难度:来源:
类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=______,dn=______
答案
举一反三
题型:不详难度:| 查看答案
题型:黄浦区二模难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

等差数列{an}等比数列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn______
若cn=
a1+a2a3+∧+an
n

则数列{cn}为等差数列
若dn=______,
则数列{dn}为等比数列
∵等比数列通常与等差数列类比,
加法类比为乘法,
平面中的面积类比为体积,
算术平均数类比为几何平均数
∴bn=bmqn-m
dn=
nb1b2bn


故选Bmqn-m
nb1b2bn

若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N*,则f2012(8)=______.
已知点A(x12x1)、B(x22x2)是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
2x1+2x2
2
2
x1+x2
2
成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有______成立.
记等差数列{an}的前n项的和为Sn,利用倒序求和的方法得:Sn=
n(a1+an)
2
;类似地,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,将Tn表示成首项b1,末项bn与项数n的一个关系式,即Tn=______.
在空间直角坐标系O-xyz中,方程
x2
a2
+
y2
b2
+
z2
c2
=1(a>b>c>0)
表示中心在原点、其轴与坐标轴重合的某椭球面的标准方程.2a,2b,2c分别叫做椭球面的长轴长,中轴长,短轴长.类比在平面直角坐标系中椭圆标准方程的求法,在空间直角坐标系O-xyz中,若椭球面的中心在原点、其轴与坐标轴重合,平面xOy截椭球面所得椭圆的方程为
x2
9
+
y2
16
=1
,且过点M(1,2,


23
)
,则此椭球面的标准方程为______.
若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列{
Sn
n
}为等差数列,且通项为
Sn
n
=a1+(n-1)
d
2
.类似地,请完成下列命题:若各项均为正数的等比数列{bn}的首项为b1,公比为q,前n项的积为Tn,则数列______为等比数列且通项为______.