如图,在平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形A
题型:不详难度:来源:
如图,在平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.
(1)求证:△ABF∽△CEB; (2)若△DEF的面积为2,求平行四边形ABCD的面积. |
答案
(1)见解析(2)24 |
解析
(1)证明:∵四边形ABCD是平行四边形, ∴∠A=∠C,AB∥CD, ∴∠ABF=∠CEB, ∴△ABF∽△CEB. (2)24. |
举一反三
如图,四边形ABCD是正方形,E是AD上一点,且AE=AD,N是AB的中点,NF⊥CE于F,求证:FN2=EF·FC.
|
在梯形ABCD中,点E、F分别在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求证:(m+n)EF=mBC+nAD.你能由此推导出梯形的中位线公式吗? |
如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,求PC和CD的长.
|
如图,AC为圆O的直径,弦BD⊥AC于点P,PC=2,PA=8,求tan∠ACD的值.
|
如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,求圆O的面积.
|
最新试题
热门考点