某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改
题型:不详难度:来源:
某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问: (1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大? |
答案
(1)340(万元) (2)每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元 |
解析
解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+=32(元),书商所获得的总利润为5×(100-32)=340(万元). (2)每套丛书售价定为x元时,由 解得0<x<150. 依题意,单套丛书利润 P=x-(30+)=x--30, ∴P=-[(150-x)+]+120. ∵0<x<150,∴150-x>0, 由(150-x)+≥2=2×10=20, 当且仅当150-x=,即x=140时等号成立,此时,Pmax=-20+120=100. ∴当每套丛书售价定为100元时,书商获得总利润为340万元,每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元. |
举一反三
牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=kax,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为( ) |
已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积为定值1010,为了简单起见,科学家用PA=lg(nA)来记录A菌个数的资料,其中nA为A菌的个数,则下列判断中正确的个数为( ) ①PA≥1; ②若今天的PA值比昨天的PA值增加1,则今天的A菌个数比昨天的A菌个数多了10个; ③假设科学家将B菌的个数控制为5万个,则此时5<PA<5.5. |
某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后,AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.
(1)设AB=x(米),用x表示图中DP的长度,并写出x的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽? |
轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m. (1)求助跑道所在的抛物线方程; (2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围. (注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)
|
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率). (1)将表示成的函数,并求该函数的定义域; (2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大. |
最新试题
热门考点