已知函数f(x)=x﹣﹣2lnx在定义域是单调函数,f′(x)是函数f(x)的导函数.(1)求实数m的取值范围;(2)当m取得最小值时,数列{an}满足:a1=

已知函数f(x)=x﹣﹣2lnx在定义域是单调函数,f′(x)是函数f(x)的导函数.(1)求实数m的取值范围;(2)当m取得最小值时,数列{an}满足:a1=

题型:四川省同步题难度:来源:
已知函数f(x)=x﹣﹣2lnx在定义域是单调函数,f′(x)是函数f(x)的导函数.
(1)求实数m的取值范围;
(2)当m取得最小值时,数列{an}满足:a1=m+3,an+1=f′()﹣nan+1,n∈N*.
试证:
①an>n+2;
+++…+
答案
解:(1)∵f′(x)=,令h(x)=x2﹣2x+m,△=(﹣2)2﹣4m,
当△≤0,即m≥1时,f′(x)≥0恒成立,f(x)单调递增;
当△>0,即m<1时,f′(x)的符号不确定(或大于0,或小于0),
f(x)在定义域内不单调,
∴当f(x)单调递增时,m≥1;当m<1时,f(x)在定义域内不单调.
∴实数m的取值范围为[1,+∞);
(2)∵m≥1,
∴当m取得最小值时m=1,
∴a1=3+m=4,
又an+1=f′()﹣nan+1,n∈N*.
∴an+1=an2﹣nan+1
①用数学归纳法证明:
(I)当n=1时,a1=4>3=1+2,不等式成立;
(II)假设当n=k时,不等式成立,即ak>k+2,
那么,ak+1=ak(ak﹣k)+1>(k+2)(k+2﹣k)+1≥k+3,
也就是说,当n=k+1时,ak+1>(k+1)+2,
根据(I)和(II),对于所有n≥1,有an≥n+2.
②由an+1=an(an﹣n)+1及①,对k≥2,有
ak=ak﹣1(ak﹣1﹣k+1)+1≥ak﹣1(k﹣1+2﹣k+1)+1=2ak﹣1+1
∵1+ak≥2(ak﹣1+1),
由等比数列的通项公式可得:ak≥2k﹣1(a1+1)﹣1,
于是(k≥2),
++…+==
举一反三
已知正项数列{an}中,.用数学归纳法证明:
题型:江苏期末题难度:| 查看答案
已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf"(x)>f(x)在(0,+∞)上恒成立.
(1)①求证:函数在(0,+∞)上是增函数;
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(2)已知不等式ln(x+1)<x在x>﹣1且x≠0时恒成立,求证:
题型:山东省月考题难度:| 查看答案
(1)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1,求f(x)的最小值;
(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则≤a1b1+a2b2
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。注:当α为正有理数时,有求导公式(xα=αxα-1
题型:高考真题难度:| 查看答案
已知函数f(x)=﹣x3+ax在(0,1)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1=b∈(0,1),且2an+1=f(an),试比较an与an+1的大小.
题型:期末题难度:| 查看答案
已知
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.
题型:期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.