已知,.(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

已知,.(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

题型:期末题难度:来源:
已知
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.
答案
解:(1)当n=1时,f(1)=1,,f(1)>g(1),
当n=2时,,f(2)>g(2),
当n=3时,,g(3)=2,f(3)>g(3).
(2)猜想:f(n)>g(n)(n∈N*),即
下面用数学归纳法证明:
①当n=1时,上面已证.
②假设当n=k时,猜想成立,即
则当n=k+1时,=

下面转化为证明:
只要证:
需证:(2k+3)2>4(k+2)(k+1),
即证:4k2+12k+9>4k2+12k+8,此式显然成立.
所以,当n=k+1时猜想也成立.
综上可知:对n∈N*,猜想都成立,即成立.
举一反三
设f(n)=nn+1,g(n)=(n+1)n,n∈N*
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.
题型:不详难度:| 查看答案
函数数列{fn(x)}满足:f1(x)=
x


1+x2
(x>0)
,fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表达式,并证明你的结论.
题型:不详难度:| 查看答案
试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.
题型:不详难度:| 查看答案
用数学归纳法证明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N+)
时,第一步验证n=1时,左边应取的项是______
题型:不详难度:| 查看答案
证明不等式1+
1


2
+
1


3
+…+
1


n
<2


n
(n∈N*
题型:云南难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.