已知,,n∈N*,(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.

已知,,n∈N*,(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.

题型:0110 期末题难度:来源:
已知,n∈N*,
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.
答案
解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);
当n=2时,,所以f(2)<g(2);
当n=3时,,所以f(3)<g(3).
(2) 由(1),猜想f(n)≤g(n);
下面用数学归纳法给出证明:
①当n=1,2,3时,不等式显然成立;
②假设当n=k(k≥3)时不等式成立,即
那么,当n=k+1时,
因为
所以
由①、②可知,对一切n∈N*,都有f(n)≤g(n)成立.
举一反三
已知m,n为正整数,
(1)证明:当x>-1时,(1+x)m≥1+mx;
(2)对于n≥6,已知,求证,m=1,2,3,…,n;
(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n。
题型:0110 期末题难度:| 查看答案
已知α1,α2,…αn∈(0,π),n是大于1的正整数,
求证:|sin(α12+…+αn)|<sinα1+sinα2+…+sinαn
题型:0108 模拟题难度:| 查看答案
已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f′(an+1)。试比较与1的大小,并说明理由。
题型:同步题难度:| 查看答案
已知等比数列{an}的首项a1=2,公比q=3,Sn是它的前n项和,求证:
题型:江苏模拟题难度:| 查看答案
已知函数,设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-| ,Sn=b1+b2+…bn(n∈N*)。
(1)用数学归纳法证明
(2)证明
题型:辽宁省高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.