【题文】函数的单调递减区间是(     )A.B.C.D.

【题文】函数的单调递减区间是(     )A.B.C.D.

题型:难度:来源:
【题文】函数的单调递减区间是(     )
A.B.C.D.
答案
【答案】B
解析
【解析】
试题分析:因为由已知可知函数的定义域为,而外层函数是定义域内的减函数,要求解函数的单调减区间,只要求解内层的增区间即可,而对于内层的,在上递增,故利用复合函数的同增异减,得到答案为B.
考点:本试题主要是考查了函数单调性的判定,以及复合函数的同增异减的判定法则的应用。
点评:解决该试题的易错点就是对于定义域的忽略求解,以及复合函数的判定法则的熟练程度,是考查了分析和解决问题的能力。
举一反三
【题文】函数的值域        
题型:难度:| 查看答案
【题文】下列四个函数:(1)     (2)     (3)
(4),其中同时满足:① ②对定义域内的任意两个自变量,都有的函数个数为
A.1B.2C.3D.4
题型:难度:| 查看答案
【题文】已知函数的反函数,则函数的单调递增区间是   .
题型:难度:| 查看答案
【题文】 (满分12分)
已知函数.
(1)判断并证明函数的单调性;
(2)若函数为奇函数,求的值;
(3)在(2)的条件下,若恒成立,求实数的取值范围.
题型:难度:| 查看答案
【题文】(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数在区间                     上递增.当             时,                 .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.