如图5-3-4所示,长为L的细绳,一端系着一只小球,另一端悬于O点,将小球由图示位置由静止释放,当摆到O点正下方时,绳被小钉挡住.当钉子分别处于图中A、B、C三

如图5-3-4所示,长为L的细绳,一端系着一只小球,另一端悬于O点,将小球由图示位置由静止释放,当摆到O点正下方时,绳被小钉挡住.当钉子分别处于图中A、B、C三

题型:不详难度:来源:
如图5-3-4所示,长为L的细绳,一端系着一只小球,另一端悬于O点,将小球由图示位置由静止释放,当摆到O点正下方时,绳被小钉挡住.当钉子分别处于图中AB、C三个不同位置时,小球继续摆的最大高度分别为h1h2h3,则              (   )
A.h1h2h3B.h1=h2=h3
C.h1h2=h3 D.h1=h2h3

答案
D
解析
小球在摆动过程中,绳的拉力不做功,只有重力做功,小球的机械能守恒.无论钉子放在ABC哪一点,小球继续摆动所能上升的最大高度,不会超过B点所在平面即原释放点的高度.当钉子放在AB点时,小球不会摆动到圆心的位置以上,故不会脱离圆周.到最高点时速度为零,动能为零,能上升到原来的高度即h1=h2.当钉子放在C点时,小球摆到最低点后开始以C点为圆心,以为半径做圆周运动,根据竖直面内圆周运动的规律,小球上升到某一位置会脱离圆周,故到最高点时,速度不是零,动能不是零,重力势能数值相应减少,所以上升不到原下落点高度,h3h1=h2.所以D项正确.
举一反三
设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱?

已知:返回过程中需克服火星引力做功,返回舱与人的总质量为m,火星表面重力加速度为g,火星半径为R,轨道舱到火星中心的距离为r;不计火星表面大气对返回舱的阻力和火星自转的影响.
题型:不详难度:| 查看答案
已知AB两物块的质量分别为m和3m,用一轻质弹簧连接,放在光滑水平面上,使B物块紧挨在墙壁上,现用力推物块A压缩弹簧(如图所示).这个过程中外力F做功为W,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时AB的速度各为多大时,有同学求解如下:

解:设弹簧第一次恢复原长时AB的速度大小分别为vAvB
系统动量守恒:0=mvA+3mvB
系统机械能守恒:W=
解得:(“-”表示B的速度方向与A的速度方向相反)
(1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.
(2)当AB间的距离最大时,系统的弹性势能EP=?
题型:不详难度:| 查看答案
如图所示,一轻绳穿过光的定滑轮,两端各拴一小物块,它们的质量分别为m1m2,已知m2=3m1,起始时m1放在地上,m2离地面高度为h=1.00m,绳子处于拉直状态,然后放手,设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提拉物块时绳的速度与物块相同,试求m2所走的全部路程(取三位有效数字).

题型:不详难度:| 查看答案
如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点Ag取10m/s2.求:
(1)解除锁定前弹簧的弹性势能;
(2)小物块第二次经过O/点时的速度大小;
(3)最终小物块与车相对静止时距O/点的距离.
题型:不详难度:| 查看答案
如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,AB是两个质量均为 m=1㎏的小滑块(可视为质点),C为左端附有胶泥的质量不计的薄板,D为两端分别连接BC的轻质弹簧.薄板、弹簧和滑块B均处于静止状态.当滑块A置于斜面上且受到大小F=4N,方向垂直斜面向下的恒力作用时,恰能向下匀速运动.现撤去F,让滑块A从斜面上距斜面底端L=1m处由静止下滑,若取g=10m/s2,sin37°=0.6,cos37°=0.8.

(1)求滑块A到达斜面底端时的速度大小v1
(2)滑块AC接触后粘连在一起(不计此过程中的机械能损失),求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能Ep
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.