已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为_.

已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为_.

题目
已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为______.
答案
由题意,不等式f(m-1)-f(1-2m)>0可变为f(m-1)>f(1-2m)
又f(x)是定义在(-2,2)上的减函数
−2<m−1<2
−2<1−2m<2
m−1<1−2m
,解之得
1
2
<m<
2
3

故答案为
1
2
<m<
2
3
由题设条件知,可先将不等式f(m-1)-f(1-2m)>0可变为f(m-1)>f(1-2m),再利用函数是减函数的性质将此抽象不等式转化为关于m的不等式组,解不等式组即可得到m的取值范围.

函数单调性的性质.

本题函数单调性的性质,对不等式进行移项,方便使用函数的单调性转化是解题的关键,本题考查了转化的思想及变形的能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.