用中值定理证明不等式:│sina-sinb│≤│a-b│ 要详细过程、、谢谢了

用中值定理证明不等式:│sina-sinb│≤│a-b│ 要详细过程、、谢谢了

题目
用中值定理证明不等式:│sina-sinb│≤│a-b│ 要详细过程、、谢谢了
答案
函数 f(x)=sinx在区间[a,b]上满足中值定理条件吧
所以 存在ξ∈(a,b),使得f ' (ξ) = [f(a)-f(b)]/(a-b),即cosξ = (sina-sinb)/(a-b)
从而| (sina-sinb)/(a-b)|=|cosξ|≤1,整理即得结论
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.