如图,已知:B是线段AD上的一点,△ABC、△BDE均为等边三角形.AE交BC于P,CD交BE于Q.求证PQ∥AD.

如图,已知:B是线段AD上的一点,△ABC、△BDE均为等边三角形.AE交BC于P,CD交BE于Q.求证PQ∥AD.

题目
如图,已知:B是线段AD上的一点,△ABC、△BDE均为等边三角形.AE交BC于P,CD交BE于Q.求证PQ∥AD.
答案
证明:△ABC、△BCD为等边三角形,所以∠ABC=∠DBE=60
∠ABE=∠ABC+∠CBE
∠CBD=∠DBE+∠CBE
所以∠ABE=∠CBD
又有AB=CB,BE=BD
所以△ABE≌△CBD.∠BAP=∠BCQ
在△ABP和△CBQ中
∠BAP=∠BCQ
∠ABP=∠CBQ=60
AB=CB
所以△ABP≌△CBQ.BP=BQ
因为∠PBQ=60,所以△PBQ为等边三角形.
∠QPB=∠ABP=60
所以PQ∥AD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.