设0<θ<π 求函数y=sinθ/2(1+cosθ)最大值

设0<θ<π 求函数y=sinθ/2(1+cosθ)最大值

题目
设0<θ<π 求函数y=sinθ/2(1+cosθ)最大值
答案
y=sin(θ/2)(1+cosθ)=sin(θ/2).2[cos(θ/2)]^2
=2sin(θ/2)-2[sin(θ/2)]^3
另 t=sin(θ/2)
由于:(0,π),故:
(θ/2)~(0,π/2)
因此:
[sin(θ/2)]~(0,1)
即是t的范围为:
(0,1)
因此:
y=2sin(θ/2)-2[sin(θ/2)]^3
=2t-2t^3 (0,1)
对y求导得:
y'=-6t^2+2
解得:
增区间为:[-√3/3,√3/3]
减区间为:(-∞,-√3/3]U[√3/3,+∞)
由于t~(0,1),故最大值为:
ymax=y(√3/3)
=2√3/3 - 2x(√3/3)^3
=4√3/9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.