正方形,,,…按如图所示的方式放置,点和点分别在直线和轴上,已知点,则的坐标是     .

正方形,,,…按如图所示的方式放置,点和点分别在直线和轴上,已知点,则的坐标是     .

题型:不详难度:来源:
正方形,,,…按如图所示的方式放置,点和点分别在直线轴上,已知点,则的坐标是     .

答案
(220141,22013).
解析

试题分析:首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n1,2n1).
∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
设直线A1A2的解析式为:y=kx+b,
,解得: 
∴直线A1A2的解析式是:y=x+1.
∵点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴点B3的坐标为(7,4),
∴B2014的横坐标是:220141,纵坐标是:22013
∴Bn的坐标是(220141,22013).
举一反三
如图,直线,相交于点轴的交点坐标为轴的交点坐标为,结合图象解答下列问题:(每小题4分,共8分)
(1)求直线表示的一次函数的表达式;
(2)当为何值时,,表示的两个一次函数值都大于.

题型:不详难度:| 查看答案
如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,,在上取一点,将纸片沿翻折,使点落在边上的点处,求直线的解析式.

题型:不详难度:| 查看答案
书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量(个)与甲品牌文具盒数量(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元.
(1)根据图象,求之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货价;
(3)若小卖部每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学校后勤部决定,准备用不超过6 300元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?

题型:不详难度:| 查看答案
如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为( )
A.2B.3
C.4D.PB的长度随点B的运动而变化

题型:不详难度:| 查看答案
如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6)且SDBP=27.
(1)求上述一次函数与反比例函数的表达式;
(2)设点Q是一次函数y=kx+3图象上的一点,且满足△DOQ的面积是△COD面积的2倍,直接写出点Q的坐标.
(3)若反比例函数的图象与△ABP总有公共点,直接写出n的取值范围.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.