如图,已知一次函数y1=-x+b的图象与y轴交于点A(0,4), y2=kx-2的图象与x轴交于点B(1,0).那么使y1>y2成立的自变量x的取值范围是
题型:不详难度:来源:
如图,已知一次函数y1=-x+b的图象与y轴交于点A(0,4), y2=kx-2的图象与x轴交于点B(1,0).那么使y1>y2成立的自变量x的取值范围是 . |
答案
x<2 |
解析
试题分析:先根据待定系数法分别求得两个函数的解析式,再求得两个函数图象交点的横坐标,最后观察图象得到y1的图象在y2=的图象上方的部分对应的自变量x的取值范围即可得到结果. 由一次函数y1=-x+b的图象与y轴交于点A(0,4)可得b=4 由一次函数y2=kx-2的图象与x轴交于点B(1,0)可得k=2 由-x+4=2x-2解得x=2 则由图象可得使y1>y2成立的自变量x的取值范围是x<2. 点评:解题的关键是熟练掌握图象在上方的部分对应的函数值较大,在下方的部分对应的函数值较小. |
举一反三
已知一次函数y=kx+b的图象经过点(0,4)与点(1,2). (1)求一次函数的解析式; (2)若一次函数y=kx+b的图象还经过点(-1,m)与点(3,n),试比较m,n的大小. |
本题中的图象,是表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程y(千米)随时间x(小时)变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:
(1)分别求出表示轮船和快艇行驶过程中路程y(千米)随时间x(小时)变化的函数关系式(不要求写出自变量的取值范围); (2)轮船和快艇在途中行驶的速度分别是多少? (3)快艇出发多长时间后追上轮船? |
阅读下面的材料: 在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.
解答下面的问题: (1)求过点P(1,4)且与已知直线y=-2x-1平行的直线的函数表达式,并画出直线l的图象; (2)设直线l分别与y轴、x轴交于点A、B,如果直线:y=kx+t ( t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式. |
拖拉机的油箱装油56千克,犁地时平均每小时耗油6千克,则油箱中剩油量q(千克)与时间t(小时)之间的关系式是 ,自变量的取值范围是 . |
(本题满分10分,其中第(1)4分、第(2)小题6分) 某公司销售一种商品,这种商品一天的销量y(件)与售价x(元/件)之间存在着如图所示的一次函数关系,且40≤x≤70.
(1)根据图像,求y与x之间的函数解析式; (2)设该销售公司一天销售这种商品的收入为w元. ①试用含x的代数式表示w; ②如果该商品的成本价为每件30元,试问当售价定为每件多少元时,该销售公司一天销售该商品的盈利为1万元?(收入=销量×售价) |
最新试题
热门考点