为迎接“五·一”劳动节,菏泽市某中学组织了甲、乙两个义务劳动小组,甲组x人,乙组y人,到“中华路”和“青年路”打扫卫生,根据打扫卫生的进度,学校随时调整两组人数

为迎接“五·一”劳动节,菏泽市某中学组织了甲、乙两个义务劳动小组,甲组x人,乙组y人,到“中华路”和“青年路”打扫卫生,根据打扫卫生的进度,学校随时调整两组人数

题型:山东省中考真题难度:来源:
为迎接“五·一”劳动节,菏泽市某中学组织了甲、乙两个义务劳动小组,甲组x人,乙组y人,到“中华路”和“青年路”打扫卫生,根据打扫卫生的进度,学校随时调整两组人数,如果从甲组调50人去乙组,则乙组人数为甲组人数的2倍;如果从乙组调m人去甲组,则甲组人数为乙组人数的3倍。
(1)求出x与m之间的关系式。
(2)问当m为何值时,甲组人数最少,最少是多少人?
答案
解:(1)由题意得方程组
整理得


(2)由知x随m增大而增大
又因为x,m,y均为正整数
所以当时,x取得最小值
其最小值为
此时适合题意
答:当时,甲组人数最少,最少为94人。
举一反三
某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工,每人每天只能做一项工作,若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出),已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元,设每天安排x名工人进行蔬菜精加工。
(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;
(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w元,求w与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?
题型:辽宁省中考真题难度:| 查看答案
(1)在如图1所示的平面直角坐标系中画出点A(2,3),再画出点A关于y轴的对称点A",则点A"的坐标为_______;
(2)在图1中画出过点A和原点O的直线l,则直线l的函数关系式为__________;再画出直线l关于y轴对称的直线l",则直线l"的函数关系式为_________;
(3)在图2中画出直线y=2x+4(即直线m),再画出直线m关于y轴对称的直线m",则直线m"的函数关系式为___________;
(4)请你根据自己在解决以上问题的过程中所获得的经验回答:直线y=kx+b(k、b为常数,k≠0)关于y轴对称的直线的函数关系式为__________。
图1                                                  图2
题型:江苏中考真题难度:| 查看答案
甲、乙两个水桶内水面的高度y(cm)与放水(或注水)的时间x(分)之间的函数图象如图所示,当两个水桶内水面高度相同时,x约为____________分。(精确到0.1分)

题型:吉林省中考真题难度:| 查看答案
如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为EF,点F为折痕与y轴的交点。

(1)求点G的坐标;
(2)求折痕EF所在直线的解析式;
(3)设点P为直线EF上的点,是否存在这样的点P,使得以P,F,G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由。
题型:辽宁省中考真题难度:| 查看答案
某厂生产一种零件,每个成本为40元,销售单价为60元。该厂为了鼓励客户购买,决定当一次购买零件超过100个时,多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元。
(1)当一次购买多少个零件时,销售单价恰为51元?
(2)设一次购买零件x个时,销售单价为y元,求y与x的函数关系式。
(3)当客户一次购买500个零件时,该厂获得的利润是多少?当客户一次购买1000个零碎件时,利润又是多少?(利润=售价-成本)
题型:吉林省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.