某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件

某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件

题型:不详难度:来源:
某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.
(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;
(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);
(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?
答案
(1)y=-3x+240,其中40≤x≤70;(2)W=-3x2+360x-9600,其中40≤x≤70;(3)60,1200元.
解析

试题分析:(1)每件销售价x则降低了(50-x)元,销售量是90+3(50-x)件;或升高了(x-50)元,销售量是90-3(x-50)件,两个式子可以统一,根据销售价的范围写出自变量的取值范围;
(2)每天的利润=每件的利润×销售量,每件利润为(x-40)元,销售量为y,所以利润表达式w=(x-40)(-3x+240);
(3)运用函数性质求解.
试题解析:(1)y=-3(x-50)+90,
即y=-3x+240,其中40≤x≤70;
(2)W=x(-3x+240)-40(-3x+240),
W=-3x2+360x-9600,其中40≤x≤70;
(3)W=-3(x-60)2+1200
当x=60时,W有最大值1200.
答:当酒的售价为60元时,平均每天的毛利润最大,最大毛利润为1200元.
考点: 二次函数的应用.
举一反三
如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.
题型:不详难度:| 查看答案
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c的图象如图所示,则点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是 _________ 
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴与A、B两点,交y轴于点C,其中点B的坐标为(3,0).

(1)求该抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.