已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8).(1)求m的值,并将平移后的抛物线解析式写成的形式;(2)将平移后的抛物线在x轴下方的部分沿x

已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8).(1)求m的值,并将平移后的抛物线解析式写成的形式;(2)将平移后的抛物线在x轴下方的部分沿x

题型:不详难度:来源:
已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在时对应的函数值y的取值范围;
(3)设一次函数,问是否存在正整数使得(2)中函数的函数值时,对应的x的值为,若存在,求出的值;若不存在,说明理由.

答案
解:(1)由题意可得
又点(1,8)在图象上
∴ 
∴  m=2 
   
(2) 
时, 
(3)不存在 
理由:当y=y3且对应的-1<x<0时,

∴  

∴ 不存在正整数n满足条件
解析
(1)根据抛物线y1=x2+4x+1的图象向上平移m个单位,可得y2=x2+4x+1+m,再利用又点(1,8)在图象上,求出m即可;
(2)根据函数解析式画出图象,即可得出函数大小分界点;
(3)根据当y=y3且对应的﹣1<x<0时,x2+4x+3=nx+3,得出n取值范围即可得出答案.
举一反三
在平面直角坐标系中,抛物线轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点坐标;
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
题型:不详难度:| 查看答案
如图,正方形ABCD的四个顶点分别在四条平行线上,这四条直线中相邻两条之间的距离依次为>0,>0,>0).
(1)求证:=
(2)设正方形ABCD的面积为S,求证:S=
(3)若,当变化时,说明正方形ABCD的面积S随的变化情况.
题型:不详难度:| 查看答案
同一坐标平面内,图象不可能由函数y=2x2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是(     )
A.B.y=2x2+3C.y=-2x2-1D.y=2(x+1)2-1

题型:不详难度:| 查看答案
如果反比例函数的图象如右图所示,那么二次函数的图象大致为(     )
题型:不详难度:| 查看答案
已知抛物线为常数,且)的顶点为,与轴交于点;抛物线与抛物线关于轴对称,其顶点为。若点是抛物线上的点,使得以A、B、C、P为顶点的四边形为菱形,则m为(   )
(A)、       (B)、      (C)、      (D)、
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.