已知:如图,二次函数y=ax2+bx+c的图象与x轴、y轴都只有一个交点,分别为A、B且AB=2,又关于x的方程x2-(b+2ac)x+m=0(m<0)的两个实

已知:如图,二次函数y=ax2+bx+c的图象与x轴、y轴都只有一个交点,分别为A、B且AB=2,又关于x的方程x2-(b+2ac)x+m=0(m<0)的两个实

题型:不详难度:来源:
已知:如图,二次函数y=ax2+bx+c的图象与x轴、y轴都只有一个交点,分别为A、B且AB=2,又关于x的方程x2-(b+2ac)x+m=0(m<0)的两个实数根互为相反数.
(1)求ac的值;
(2)求二次函数的解析式;
(3)过A点的直线与二次函数图象相交于另一个点C,与y轴的负半轴相交于点D,且使△ABD和△ABC的面积相等,求此直线的解析式并求△ABC的面积.
答案
(1)∵方程x2-(b+2ac)x+m=0(m<0)的两个实数根x1,x2互为相反数,
∴x1+x2=b+2ac=0…①,
又∵函数y=ax2+bx+c的图象与x轴只有一个交点,
∴△=b2-4ac=0…②,
解①②得ac=0(舍去),ac=1,
则b=±2,
根据对称轴x=-
b
2a
>0且a>0可知b<0,故b=-2;

(2)连接AB,由抛物线解析式可知OA=-
b
2a
,OB=c,
在Rt△AOB中,OA2+OB2=AB2
即(-
b
2a
2+c2=22
b2+4a2c2
4a2
=4,
解得a=


2
2
(舍去负值),
则c=
1
a
=


2

所以,抛物线解析式为y=


2
2
x2-2x+


2


(3)∵y=


2
2
x2-2x+


2
=


2
2
(x-


2
2
∴A(


2
,0),
∵△ABD和△ABC的面积相等,
∴△ABD和△BCD的BD边上高的比为1:2,即A、C两点横坐标的比为1:2,
由此可得C点横坐标为2


2
,代入y=


2
2
(x-


2
2中,得y=


2

则C(2


2


2
),
设直线AC解析式为y=kx+n,将A(


2
,0),C(2


2


2
)代入,得







2
k+n=0
2


2
k+n=


2

解得





k=1
n=-


2

所以,直线AC解析式为y=x-


2

由于B(0,


2
),C(2


2


2
),
所以,S△ABC=
1
2
×2


2
×


2
=2.
举一反三
如图,已知一次函数y=-
3
4
x+6
与坐标轴交于A、B点,AE是∠BAO的平分线,过点B作BE⊥AE,垂足为E,过E作x轴的垂线,垂足为M.
(1)求证:M为OB的中点;
(2)求以E为顶点,且经过点A的抛物线解析式.
题型:不详难度:| 查看答案
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A,B两点,与y轴相交于点C,连接BC,已知△BOC是等腰三角形.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S.
①求S与x之间的函数关系式.
②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标.
题型:不详难度:| 查看答案
计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道叫做磁道.如图,现有一张半径为45mm,有
10
3
(45-r)条磁道的磁盘,这张磁盘最内磁道的半径为rmm.
(1)磁盘最内磁道上每0.015mm的弧长为1个存储单元,用r的代数式表示这条磁道有多少个存储单元?
(2)如果各磁道的存储单元数目与最内磁道相同,且磁盘的存储量是225000π个存储单元,求最内磁道的半径r是多少?
题型:不详难度:| 查看答案
如图,过A、C两点的抛物线y=x2+bx+c上有一点M,已知A(-1,0),C(0,-2),
(1)这个抛物线的解析式为______;
(2)作⊙M与直线AC相切,切点为C,则M点的坐标为______.
题型:不详难度:| 查看答案
如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.