如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。(1)求

如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。(1)求

题型:广东省模拟题难度:来源:
如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。
(1)求点A的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似,若存在,请求出点Q的坐标;若不存在,请说明理由。
答案
解:(1)解依题意得,解之得
∴A(6,-3),B(-4,2);(2)作AB的垂直平分线交x轴,y轴于C,D两点,交AB于M(如图)
由(1)可知:OA=3,OB=2
∴AB=5
∴OM=AB-OB=
过B作BE⊥x轴,E为垂足,
由△BEO∽△OCM,得:
∴OC=
同理:OD=
∴C(,0),D(0,),
设CD的解析式为y=kx+b(k≠0)
,∴
∴AB的垂直平分线的解析式为y=2x-(3)若存在点P使△APB的面积最大,则点P在与直线AB平行且和抛物线只有一个交点的直线上,并设该直线与x轴,y轴交于G,H两点(如图)
,∴
∵抛物线与直线只有一个交点,

∴m=,∴P(1,
在直线GH:中,

∴GH=
设O到GH的距离为d,


∴d=
∵AB∥GH,
∴P到AB的距离等于O到GH的距离d,
举一反三
如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在边上的点D处,点A、D的坐标分别为(5,0)和(3,0)。
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形,若存在,求出点G的坐标;若不存在,请说明理由。
题型:广东省模拟题难度:| 查看答案
如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动。
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由。
题型:湖北省模拟题难度:| 查看答案
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件。
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次。
题型:专项题难度:| 查看答案
当x=-3时,函数y=x2-3x-7的函数值是 [     ]
A.-25
B.-7
C.8
D.11
题型:月考题难度:| 查看答案
物体自由下落的高度h(m)与下落时间t(s)的关系在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=40m时,物体在地球上和月球上自由下落的时间各是多少?
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.