(1)证明:∵BH、CH分别是∠ABC、∠ACD的平分线, ∴∠ABC=2∠1,∠ACD=2∠2, ∵∠HCD是△BCH的外角, ∴∠H=∠HCD-∠HBC=∠2-∠1, ∵∠ACD是△ABC的外角, ∴∠A=∠ACD-∠ABC=2∠2-2∠1=2(∠2-∠1)=2∠H;
(2)设∠A=x由(1)得∠H=, ∵AB=AC, ∴∠ABC=, ∵BH是∠ABC的平分线, ∴∠1=, ∵∠HCD是△BCH的外角, ∴∠2=∠1+∠H=+, 要使得AB∥CH,则必须满足∠ABC=∠2 ∴=+,解得x=60° ∴当∠A等于60°时,AB∥HC.
|