如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF。解答下列问题: (1)如果AB=AC,∠BA

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF。解答下列问题: (1)如果AB=AC,∠BA

题型:专项题难度:来源:
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF。
解答下列问题:
(1)如果AB=AC,∠BAC=90°。
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为______,数量关系为______ ;
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由;(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
答案

解:(1)①垂直;相等;
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得,AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又AB=AC,
∴△DAB≌△FAC,
∴CF=BD,∠ACF=∠ABD,
∵∠BAC=90°, AB=AC,
∴∠ABC=45°,
∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF= 90°,即 CF⊥BD。

(2)画图正确,       
当∠BCA=45o时,CFBD(如图丁),
理由是:过点AAGACBC于点G,∴AC=AG,
可证:△GAD≌△CAF,
∴∠ACF=AGD=45o ,BCF=ACB+ACF= 90o,
CFBD。

(3)当具备∠BCA=45o时,
过点AAQBCBC的延长线于点Q,(如图戊)
DECF交于点P时,∴此时点D位于线段CQ上,
∵∠BCA=45o可求出AQ=CQ=4,
CD=x
DQ=4-x
容易说明AQD∽△DCP



0x3,
∴当x=2时,CP有最大值1。
举一反三
已知∠MAN,AC平分∠MAN。
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中,
①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α 的三角函数表示),并给出证明。
题型:专项题难度:| 查看答案
一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法。如图1,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c。
请利用四边形BCC′D′的面积验证勾股定理:a2+b2=c2
题型:期末题难度:| 查看答案
已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,
求证:AC=CD。
题型:广东省模拟题难度:| 查看答案
如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则=(    )。
题型:福建省月考题难度:| 查看答案
如图,C在线段AB上,在AB的同侧作等边三角形△ACM和△BCN,连接AN,BM,若∠MBN=38°,则∠ANB=(    )。
题型:竞赛题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.