如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于D,CG⊥AB于G,交AD于F,DE⊥AB于E,那么四边形CDEF是菱形吗?说说你的理由.

如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于D,CG⊥AB于G,交AD于F,DE⊥AB于E,那么四边形CDEF是菱形吗?说说你的理由.

题型:同步题难度:来源:
如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于D,CG⊥AB于G,交AD于F,DE⊥AB于E,那么四边形CDEF是菱形吗?说说你的理由.
答案
解:四边形CDEF是菱形.
证明:∵CG⊥AB,DE⊥AB,
∴CG∥DE,∠4+∠5=90°.
∴∠ACB=90°.
∴∠2+∠3=90°,DC⊥AC.
又∵AD平分∠BAC,
∴∠3=∠4,CD=DE.
又∵∠4+∠5=90°,
∴∠2=∠5,而∠1=∠5,
∴∠1=∠2.
∴CF=CD.
∴CF=DE,
∴CF平行且等于DE.
∴四边形CDEF是平行四边形.
又∵CD=DE(角平分线上的点到角的两边的距离相等),
∴四边形CDEF是菱形.
举一反三
园林工人打算在人民公园里设计一个菱形的花坛,要求使菱形两条对角线的长分别为12m和16m,小明设计了下列方案,如图所示.
(1)小明首先在地上确定两个点A、C,使AC=16m;
(2)再确定AC的中点O,然后过O点作EF⊥AC,垂足为O点,分别在OE、OF上截取
OD=6m,OB=6m;
(3)分别连接AB、BC、CD、DA,则四边形ABCD就是要确定的菱形花坛,你能说明其中的道理吗?
题型:同步题难度:| 查看答案
如图所示,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A以每秒1个单位长度的速度沿着AD边向点D移动,设点M移动的时间为t(0≤t≤10),点N为BC边上任意一点,在点M移动的过程中,线段MN是否可以将菱形ABCD分割成面积相等的两部分?请说明理由.
题型:同步题难度:| 查看答案
已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.
题型:同步题难度:| 查看答案
已知:如图,过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.
题型:同步题难度:| 查看答案
如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,求证:OE⊥DC.
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.