如图:四边形ABCD和四边形AEFC都是矩形,点B在EF边上.(1)请你找出图中一对相似三角形(相似比不等于1),并加以证明;(2)若四边形ABCD的面积为20

如图:四边形ABCD和四边形AEFC都是矩形,点B在EF边上.(1)请你找出图中一对相似三角形(相似比不等于1),并加以证明;(2)若四边形ABCD的面积为20

题型:不详难度:来源:
如图:四边形ABCD和四边形AEFC都是矩形,点B在EF边上.

(1)请你找出图中一对相似三角形(相似比不等于1),并加以证明;
(2)若四边形ABCD的面积为20,求四边形AEFC的面积.
答案
(1)证明见解析;(2)20.
解析

试题分析:(1)由于四边形ABCD和四边形AEFC都是矩形,易在图形中找到两三角形相似,如:△AEB    ∽△CBA或△AEB∽△BFC;△AEB∽△ADC;△CAB∽△BFC;△BFC∽△ADC .
(2)因为,又△AEB∽△CBA,所以,即,从而可求出四边形AEFC的面积.
试题解析:(1)△AEB△CBA.(或△AEB∽△BFC;△AEB∽△ADC;△CAB∽△BFC;△BFC∽△ADC.)
证明:∵四边形ABCD和四边形AEFC是矩形,
∴∠E=∠CBA=∠EAC=90°.
∵∠EAB+∠CAB=90°,∠EAB+∠ABE=90°,
∴∠ABE=∠CAB.
∴△AEB∽△CBA.
(2)∵△AEB∽△CBA,
.
.


考点: 相似三角形的判定与性质.
举一反三
已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则       (填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;
(3)如图3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.则的值为        

图1                     图2                     图3
题型:不详难度:| 查看答案
如图,△ABC中,∠B=90°,AB=5,BC=12,将△ABC沿DE折叠,使点C落在AB边上的处,并且∥BC,则CD的长是(    ).
A. B.6C.  D.

题型:不详难度:| 查看答案
,则____________.
题型:不详难度:| 查看答案
若两个三角形的相似比为2∶3,则这两个三角形周长的比为           
题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠BAC=900,AD⊥BC,则图中相似的三角形有            (写出一对即可).

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.