如本题图1,在中,、、分别为三边的中点,点在边上,与四边形的周长相等,设、、.(1)求线段的长(用含、、的代数式表示);(2)求证:平分;(3)连接,如本题图2

如本题图1,在中,、、分别为三边的中点,点在边上,与四边形的周长相等,设、、.(1)求线段的长(用含、、的代数式表示);(2)求证:平分;(3)连接,如本题图2

题型:不详难度:来源:
如本题图1,在中,分别为三边的中点,点在边上,与四边形的周长相等,设.

(1)求线段的长(用含的代数式表示);
(2)求证:平分;
(3)连接,如本题图2,若相似,求证:.
答案
(1)(2)可通过证明∠FDG=∠FGD,从而得出平分
(3)可通过证明∠BGC=90°从而得出
解析

试题分析:(1)解:与四边形的周长相等, 


 
,

(2)证明:分别是的中点,


.
分别是的中点,

,即平分
(3)证明:相似,(公共角),
.  10分
由(2)知.
 
三点在以为直径的圆周上,
,即.
点评:本题难度较大,主要考查学生对三角形性质知识点的掌握,注意培养数形结合思想,为中考常考题型,要求学生牢固掌握解题技巧。
举一反三
如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.

(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形
(3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.
题型:不详难度:| 查看答案
计算:已知,则         ;
题型:不详难度:| 查看答案
在数学学习和研究中经常需要总结运用数学思想方法。如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整。
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值。

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求的值是       的值是
         ,从而确定的值是          
(2)类比延伸
如图2,在原题的条件下,若,则的值是         。(用含m的代数式表示),写出解答过程。
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若a>0,b>0),则的值是         。(用含ab的代数式表示)写出解答过程。
题型:不详难度:| 查看答案
如图,在中,,.P是AB上的动点(P异于A、B),过点P的直线截,使截得的三角形与相似,当            时,截得的三角形面积为面积的.
题型:不详难度:| 查看答案
已知点C是线段AB的黄金分割点,且AC>BC,则下列等式中正确的是( )
A.AB2=ACBCB.BC2=ACABC.AC2=BCABD.AC2=2ABBC

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.