一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为           

一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为           

题型:不详难度:来源:
一天,小青想利用影子测量校园内一根旗杆的高度,在同
一时刻内,小青的影长为2米,旗杆的影长为20米,若
小青的身高为1.60米,则旗杆的高度为           米.
答案
16
解析
易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.
解:∵OA⊥DA,CE⊥DA,

∴∠CED=∠OAB=90°,
∵CD∥OE,
∴∠CDA=∠OBA,
∴△AOB∽△ECD,

解得OA=16.
故答案为:16.
举一反三
如图①,梯形ABCD中,DC∥AB,DE⊥AB于点E.
阅读理解:
在图①中,延长梯形ABCD的两腰AD、BC交于点P,过点D作DF∥CB交AB于点F,得到图②;四边形BCDF的面积为,△ADF的面积,△PDC的面积

小题1:在图②中,若DC=2,AB=8,DE=3,则     ______,     
小题2:在图②中,若,则=__________,并写出理由;
小题3:如图③,□DEFC的四个顶点在△PAB的三边上,若△PDC、△ADE、△CFB的面积分别为2、3、5,试利用(2)中的结论求△PAB的面积.
题型:不详难度:| 查看答案

小题1:如图1,正方形ABCD的边长为1,点E是AD边的中点,将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G,则FG=DG,求出此时DG的值;

小题2:如图2,矩形ABCD中,AD>AB,AB=1,点E是AD边的中点,同样将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G.

①证明:FG=DG;
②若点G恰是CD边的中点,求AD的值;
③若△ABE与△BCG相似,求AD的值.
题型:不详难度:| 查看答案
如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P,

小题1:当OA=时,求点O到BC的距离
小题2:如图2,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少?

小题3:若BC边与⊙O有公共点,直接写出 OA
的取值范围;
小题4:若CO平分∠ACB,则线段AP的长是多少?
题型:不详难度:| 查看答案
已知抛物线与x轴的一个交点为A(-1,0),与y轴正半轴交于点C.

小题1:直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
小题2:当∠ACB=90°时,求抛物线的解析式;
小题3:抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由.
小题4:在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
小题1:如图1,当∠ABC=45°时,求证:AE=MD;

小题2:如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为:                

小题3:在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠ACP的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.