如图,B,C是河岸边两点,A是对岸边上一点,测得∠ABC=45°,∠ACB=60°,BC=60米,甲想从A点出发在最短的时间内到达BC边,若他的速度为5米/分,

如图,B,C是河岸边两点,A是对岸边上一点,测得∠ABC=45°,∠ACB=60°,BC=60米,甲想从A点出发在最短的时间内到达BC边,若他的速度为5米/分,

题型:不详难度:来源:
如图,B,C是河岸边两点,A是对岸边上一点,测得∠ABC=45°,∠ACB=60°,BC=60米,甲想从A点出发在最短的时间内到达BC边,若他的速度为5米/分,则他所用的最短时间为______分.
答案
过A点作AD⊥CB交BC于点D,所走路线为A→D,
∵∠ABC=45°,∠ACB=60°,
∴tan∠CAD=
CD
AD
,tanB=
AD
BD
,∴tan30°=
CD
AD
,tan45°=
AD
BD

∴AD=


3
CD,AD=BD.
又∵CD+BD=60,
∴CD+AD=60.


3
3
AD+AD=60,
∴AD=90-30


3

90-30


3
5
=(18-6


3
)分.
举一反三
阳光明媚的一天,数学兴趣小组的同学测量学校旗杆AB的高度(如图),发现旗杆AB的影子刚好落在水平面BC和斜坡的CD上,其中BC=48米,CD=4米,斜坡CD的坡角为27°.同一时刻,测得高为1米标杆的影长是2.5米.求出旗杆AB的高度?(结果精确到0.01米)
题型:不详难度:| 查看答案
如图,已知楼AB的高为30米,从楼顶A处测得旗杆CD的顶端D的俯角为60°,又从楼AB离地面5米处的窗口E测得旗杆的顶端C仰角为45°,求:旗杆CD的长.(精确到0.1m)
题型:不详难度:| 查看答案
如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?
(精确到0.1海里,


3
≈1.732)
题型:不详难度:| 查看答案
如图,在小岛上有一观察站A.据测,灯塔B在观察站A北偏西45°的方向,灯塔C在B正东方向,且相距10海里,灯塔C与观察站A相距10


2
海里,请你测算灯塔C处在观察站A的什么方向?
题型:不详难度:| 查看答案
某校组织学生到涪江河某段测量两岸的距离,采用了两种方案收集数据.
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.

(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

测量次数123
EC(单位:米)100150200
α76°33′71°35′65°25′
计算得出河宽
(单位:米)