如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的

如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的

题型:不详难度:来源:
如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为     

答案

解析
由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,当半径OE最短时,EF最短。如图,连接OE,OF,过O点作OH⊥EF,垂足为H。

∵在Rt△ADB中,∠ABC=45°,AB=2
∴AD=BD=2,即此时圆的直径为2。
由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE•sin∠EOH=1×
由垂径定理可知EF=2EH=
举一反三
如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A"B"C的位置,且A、C、B"三点在同一条直线上,则点A所经过的最短路线的长为

A、       B、8cm     C、        D、
题型:不详难度:| 查看答案
已知⊙O的半径为1,圆心O到直线l的距离为2,过l上的点A作⊙O的切线,
切点为B,则线段AB的长度的最小值为
A.1B.C.D.2

题型:不详难度:| 查看答案
有一圆心角为120°、半径长为6㎝的扇形,若将OA、OB重合后围成一圆锥,那么圆锥的高是多少?

题型:不详难度:| 查看答案
如图,⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED与弧CAD围成的新月形的面积S.

题型:不详难度:| 查看答案
如图,有一圆锥形粮堆,从正面看是边长为2m的正三角形ABC,母线AC中点为P,一条小虫在B处,它要圆锥侧面到达P处,则小虫所经过的最短路程是多少?

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.