如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为     

如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为     

题型:不详难度:来源:
如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为      .

答案
.
解析

试题分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB-AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.
试题解析:连接OD,

∵DF为圆O的切线,
∴OD⊥DF,
∵△ABC为等边三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD为等边三角形,
∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,
∴OD∥AB,
又O为BC的中点,
∴D为AC的中点,即OD为△ABC的中位线,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB-AF=8-2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
则根据勾股定理得:FG=3
考点: 1.切线的性质;2.勾股定理 ;3.圆周角定理
举一反三
已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.

题型:不详难度:| 查看答案
如图,在Rt中,,以AC为直径的⊙O交AB于点D,E是BC的中点.

(1)求证:DE是⊙O的切线;
(2)过点E作EF⊥DE,交AB于点F.若AC=3,BC=4,求DF的长.
题型:不详难度:| 查看答案
如图,点A、B、P是⊙O上的三点,若∠APB=45°,则∠AOB的度数为(   )

A.100°         B.90°          C.85°           D.45°
题型:不详难度:| 查看答案
如图,AB是半圆O的直径,AB=,弦AC=,点P为半圆O上一点(不与点A、C)重合. 则∠APC的度数为       .

题型:不详难度:| 查看答案
如图,已知在扇形OAB中,∠AOB=90°,半径OA=10,正方形FCDE的四个顶点分别在和半径OA、OB上,则CD的长为     

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.