(1)连接OB和OC; ∵OE⊥BC,∴BE=CE; ∵OE=BC,∴∠BOC=90°,∴∠BAC=45°;(2分)
(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°; 由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°, ∠BAG=∠BAD,∠CAF=∠CAD,(3分) ∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°; ∴∠GAF=∠BAG+∠CAF+∠BAC=90°; ∴四边形AFHG是正方形;(5分)
(3)由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4; 设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.(7分) 在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102; 解得,x1=12,x2=-2(不合题意,舍去); ∴AD=12. (8分)
|