(I)由①知,对任意a,b∈N*,a<b,都有(a-b)(f(a)-f(b))>0, 由于a-b<0,从而f(a)<f(b), 所以函数f(x)为N*上的单调增函数. (II)令f(1)=a,则a≥1,显然a≠1,否则f(f(1))=f(1)=1,与f(f(1))=3矛盾. 从而a>1,而由f(f(1))=3, 即得f(a)=3. 又由(I)知f(a)>f(1)=a,即a<3. 于是得1<a<3,又a∈N*, 从而a=2,即f(1)=2. 进而由f(a)=3知,f(2)=3. 于是f(3)=f(f(2))=3×2=6, f(6)=f(f(3))=3×3=9, f(9)=f(f(6))=3×6=18, f(18)=f(f(9))=3×9=27, f(27)=f(f(18))=3×18=54, f(54)=f(f(27))=3×27=81, 由于54-27=81-54=27, 而且由(I)知,函数f(x)为单调增函数, 因此f(28)=54+1=55. 从而f(1)+f(6)+f(28)=2+9+55=66. (III)f(an)=f(f(3n))=3×3n=3n+1,an+1=f(3n+1)=f(f(an))=3an,a1=f(3)=6. 即数列{an}是以6为首项,以3为公比的等比数列. ∴an=6×3n-1=2×3n(n=1,2,3). 于是+++=(+++)=×=(1-), 显然(1-)<, 另一方面3n=(1+2)n=1+Cn1×2+Cn2×22++Cnn×2n≥1+2n, 从而(1-)≥(1-)=. 综上所述,≤+++<. |