已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个

题型:解答题难度:一般来源:不详
已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(


2
)

(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.
答案
(Ⅰ)设h(x)=mf(x)+ng(x),则h(x)=m(x2+x)+n(x+2)=mx2+(m+n)x+2n(m≠0),
因为h(x)为一个二次函数,且为偶函数,
所以二次函数h(x)的对称轴为y轴,即x=-
m+n
2m
=0

所以n=-m,则h(x)=mx2-2m,
h(


2
)=0
;(3分)
(Ⅱ)由题意,设h(x)=mf(x)+ng(x)=mx2+(am+n)x+bn(m,n∈R,且m≠0)
由h(x)同时也是g(x)、l(x)在R上生成的一个函数,
知存在m0,n0使得h(x)=m0g(x)+n0l(x)=2n0x2+(m0+3n0)x+(bm0-n0),
所以函数h(x)=mx2+(am+n)x+bn=2n0x2+(m0+3n0)x+(bm0-n0),





m=2n0
am+n=m0+3n0
bn=bm0-n0
,(5分)
消去m0,n0,得am=(
1
2b
+
3
2
)m

因为m≠0,所以a=
1
2b
+
3
2
,(7分)
因为b>0,
所以a+b=
1
2b
+
3
2
+b≥
3
2
+2


b•
1
2b
=
3
2
+


2
(当且仅当b=


2
2
时取等号),
故a+b的最小值为
3
2
+


2
.(9分)
(Ⅲ)结论:函数h(x)不能为任意的一个二次函数.
以下给出证明过程.
证明:假设函数h(x)能为任意的一个二次函数,
那么存在m1,n1使得h(x)为二次函数y=x2,记为h1(x)=x2
即h1(x)=m1f(x)+n1g(x)=x2;①
同理,存在m2,n2使得h(x)为二次函数y=x2+1,记为h2(x)=x2+1,
即h2(x)=m2f(x)+n2g(x)=x2+1.②
由②-①,得函数h2(x)-h1(x)=(m2-m1)f(x)+(n2-n1)g(x)=1,
令m3=m2-m1,n3=n2-n1,化简得m3(x2+ax)+n3(x+b)=1对x∈R恒成立,
即m3x2+(m3a+n3)x+n3b=1对x∈R恒成立,
所以





m3=0
m3a+n3=0
n3b=1
,即





m3=0
n3=0
n3b=1

显然,n3b=0×b=0与n3b=1矛盾,
所以,假设是错误的,
故函数h(x)不能为任意的一个二次函数.(14分)
注:第(Ⅲ)问还可以举其他反例.如h1(x)=2x2,h2(x)=2x2+1,
举一反三
已知定义在R的奇函数f(x),在[0,+∞)上单调递减,且f(2-a)+f(1-a)<0,则a的取值范围是(  )
A.(
3
2
,2]
B.(
3
2
,+∞)
C.[1,
3
2
)
D.(-∞,
3
2
)
题型:单选题难度:简单| 查看答案
给出下列四个函数:①f(x)=x+1,=2 ②f(x)=
1
x
,③f(x)=x2,④f(x)=sinx,其中在(0,+∞)是增函数的有(  )
A.0个B.1个C.2个D.3个
题型:单选题难度:一般| 查看答案
已知函数f(x)=(2x-2-x)m+(x3+x)n+x2-1(x∈R)
(1)求证:函数g(x)=f(x)-x2+1是奇函数;
(2)若f(2)=8,求f(-2)的值.
题型:解答题难度:一般| 查看答案
对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5
x+3
的图象上不动点的坐标为 ______.
题型:填空题难度:一般| 查看答案
已知:函数f(x)=ax+
b
x
+c
(a、b、c是常数)是奇函数,且满足f(1)=
5
2
,f(2)=
17
4

(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,
1
2
)
上的单调性并证明.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.