已知函数f(x)=lnx-14x+34x-1,g(x)=x2-2mx+4(I)求函数f(x)的单调区间;(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使

已知函数f(x)=lnx-14x+34x-1,g(x)=x2-2mx+4(I)求函数f(x)的单调区间;(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使

题型:解答题难度:一般来源:孝感模拟
已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2mx+4

(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2),求实数m的取值范围.
答案
(Ⅰ)函数的定义域为(0,+∞),
f′(x)=
1
x
-
1
4
-
3
4x2
=
-x2+4x-3
4x2
=
-(x-1)(x-3)
4x2

由f′(x)>0得,1<x<3,
由f′(x)<0得,0<x<1或x>3,
∴函数f(x)的单调递增区间为(1,3);单调递减区间为(0,1),(3,+∞);
(Ⅱ) 由(Ⅰ)知函数f(x)在区间(0,1)上递减,在区间(1,2)上递增,
∴函数f(x)在区间(0,2)上的最小值为f(1)=-
1
2

由于“对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2)”等价于“g(x)在区间[1,2]上的最小值不大于f(x)在区间(0,2)上的最小值-
1
2

即g(x)min-
1
2
,(*)
又g(x)=x2-2mx+4,x∈[1,2],
∴①当m<1时,g(x)min=g(1)=5-2m>0与(*)式矛盾,
②当m∈[1,2]时,g(x)min=4-m2≥0,与(*)式矛盾,
③当m>2时,g(x)min=g(2)=8-4m≤-
1
2

解得m
17
8

综上知,实数m的取值范围是[
17
8
,+∞
).
举一反三
已知函数f(x)=10x,且实数a,b,c满足f(a)+f(b)=f(a+b),f(a)+f(b)+f(c)=f(a+b+c),则c的最大值为______.
题型:填空题难度:一般| 查看答案
已知f(x)是定义在[-1,1]上的偶函数,且在(0,1]上单调递增,则不等式f(1-x)<f(x2-1)的解集是______.
题型:填空题难度:一般| 查看答案
定义在R上的偶函数f(x),满足f(2+x)=f(2-x),且当x∈[0,2]时,f(x)=4-x2,则f(2008)=______.
题型:填空题难度:一般| 查看答案
若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[-2,2]时,f(x)=g(x).则当x∈[-4n-2,-4n+2]n∈Z时,f(x)的解析式为(  )
A.g(x)B.g(x+2n)C.g(x+4n)D.g(x-4n)
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.